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A cumulative retrospective cost adaptive control algorithm is augmented to a gain-scheduled three loop
autopilot to assess performance in a nonlinear three-degree-of-freedom missile model. The cumulative ret-
rospective cost adaptive controller requires minimal model information; specifically estimates of the relative
degree, 1st nonzero Markov parameter, and nonminimum phase zeros of the linearized missile model. A
rate gyro sensor failure is applied to the model and the performance of the control techniques is investigated
through an analysis of air-to-air intercept scenarios. The results indicate that an adaptive controller can, to
some degree, improve the missile’s ability to engage a target when such a failure occurs.

Nomenclature

m Missile mass
Iyy Missile Inertia
g Acceleration due to gravity
X;Z Inertial position in the X-Z plane
U Inertial velocity component along the body frame x-axis of the center of gravity (CG)
W Inertial velocity component along the body frame z-axis of the CG
Vm Magnitude of missile velocity
M Mach number
Az;P Acceleration component along body frame z-axis at point P along the body x-axis
� Angle of attack
� Pitch angle
q Body rate
� Air density
Sref Reference area
dref Reference length
Cx Aerodynamic force coefficient along the body frame x-axis
Cz Aerodynamic force coefficient along the body frame z-axis
Cm Aerodynamic moment coefficient along the body y-axis at the CG
�q Dynamic pressure
�p Tail fin angle
T Thrust along body frame x-axis

I. Introduction

Application of adaptive control to an agile tail-controlled missile system is a difficult problem. First, such missile
systems typically have an initial wrong-way response in measured acceleration due to the presence of a nonminimum-
phase zero1 in the linearization about trim. Therefore, standard adaptive control techniques designed for minimum-
phase systems2,3 are not well-suited for missile control. In fact, adaptive controllers based on a minimum phase
assumption can fail to produce stability throughout the range of tactical operation. Second, actuator delays, aerody-
namic effects, and structural flexibility introduce significant complexity to the problem. Third, agile tail-controlled
missiles require fast response times in order to achieve acceleration commands generated by guidance control laws.
Finally, many assumptions made when designing an adaptive controller for continuous time systems often fail to hold
when the (missile) system is sampled and controlled using zero-order-hold inputs.

Several studies of adaptive control applied to the missile problem are available in the literature 4–11. More specif-
ically, neural network adaptive control with integral action is currently being implemented on the Joint Direct Attack
Munition (JDAM)4. Adaptive control applied to bank-to-turn missiles has been investigated using neural networks5–8.
Variants of L1 adaptive control show improved performance can be achieved when applied to a linear, tail-controlled
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missile model9,10. Model reference adaptive control using a retrospective correction filter shows that a given linear,
tail-controlled missile model could adapt to changes in fin control effectiveness11.

Discrete-time adaptive controllers using a retrospective cost have been shown to be effective for minimum phase
and nonminimum phase systems12–14. A stability and convergence proof is available for the minimum-phase case15.
The fundamental concept behind retrospective cost adaptive control is the creation of a retrospective performance vari-
able, which adjusts the performance measurement based on the difference between the actual past control inputs and
the recomputed past control inputs, assuming that the current controller had been used in the past. A retrospective cost
function is defined which incorporates this variable and this cost function is optimized to determine the adaptive update
law. In instantaneous retrospective cost adaptive control, the adaptive law optimizes a cost function, which depends on
the retrospective performance at the current time step12,13. In contrast, cumulative retrospective cost adaptive control
minimizes a cumulative retrospective cost function, which is a function of the retrospective performance at the current
time step and all previous time steps14. The cumulative retrospective cost algorithm has shown to converge quickly
for regulation of nonminimum-phase systems, with the caveat being that information about the nonminimum-phase
zeros is incorporated in the design. The discrete-time adaptive algorithm is also well-suited for implementation on a
processor. Thus, system delays can be approximated by the shift operator and easily incorporated into the algorithm.

Motivated by the promising performance of retrospective cost adaptive control11, in this paper we use a cumulative
retrospective cost adaptive controller14 to control an open source Mathworks 3 DOF tail-controlled nonlinear missile
model. The baseline missile control system uses a gain-scheduled three loop autopilot topology16–18. In the adaptive
control design, we augment the cumulative retrospective cost adaptive algorithm to the missile autopilot. Both systems
are tested using a rate gyro failure that introduces significant gyro sensor noise into the closed loop system.

The paper is organized as follows. Section II provides the aerodynamic equations of motion, discusses details
behind the nonlinear missile model, and outlines the adaptive augmentation strategy. The retrospective cost adaptive
control algorithm is reviewed in section III. Section IV shows a single engagement scenario where the adaptive con-
troller reduces miss distance significantly when the rate gyro failure occurs. Finally, the more stringent monte carlo
analysis presented in section V illustrates the RCAC controller yields a modest overall reduction in miss distance.

II. Nonlinear Missile Model and Three Loop Autopilot

Consider the nonlinear three-degree-of-freedom missile model,

_X = U cos � +W sin � (1)
_Z = �U sin � +W cos � (2)
_� = q (3)

_U =
1
m
T +

�qSref

m
Cx(�;M)� qW � g sin � (4)

_W =
�qSref

m
Cz(�;M; �p) + qU + g cos � (5)

_q =
�qSrefdref

Iyy
Cm(�;M; �p; q) (6)

where the dynamic pressure is given by �q = 1=2�V 2
m and angle of attack is defined as � = atan(W=U). Measurements

of the body rate _q and lateral missile acceleration are assumed to take place at the inertial measurement unit (IMU)
location. The lateral acceleration at the IMU is related to that measured at the center of gravity through the equation

Az;IMU = Az;CG � _qxIMU; (7)

where xIMU is the distance from the CG to IMU. Here we assume that the missile IMU is forward of the CG location.
The nonlinear model in equations (1)-(7) is linearized about trim points in the region of operation for the purpose of
control design. Additionally, a second order fin actuator model of the form

up(s) =
!2
a

s2 + 2�a!as+ !2
a

ua(s); (8)

is used, where ua is the fin actuator command and !a; �a represent the natural frequency and damping ratio, respec-
tively, of the actuator model. A gain-scheduled three loop autopilot16 is designed for each trim point. The continuous
time representation for this control design is

~u(s) = Kqq(s) +
1
s

(K�q(s) +KI (KssAz;cmd �Az;IMU)) ; (9)

where Kq;K�;KI ;Kss are gain-scheduled control gains and Az;cmd is the lateral acceleration command for the IMU
location provided by the missile’s guidance system. A proportional navigation guidance law generates the acceleration
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command, while a target seeker model provides the guidance algorithm with line of sight rate and closing velocity
information. The overall missile system model is illustrated in Figure 1.

Figure 1. Missile System Block Diagram.

The trim linear model, actuator, and three loop autopilot based on equations (1)-(9) can be discretized to create a
system of the form

x(k + 1) = Ax(k) +Bu(k); (10)
y(k) = Cx(k) +D2w(k); (11)
z(k) = E1x(k) + E0w(k); (12)

where x(k) 2 Rn is a state vector, y(k) 2 Rly is a vector of measurements, z(k) 2 Rlz consists of performance
variables, u(k) 2 Rlu is the control input, w(k) 2 Rlw is an exogenous input vector consisting of reference input
commands and disturbances, and k � 0.

In this application, the adaptive controller produces a fin actuator command u(k) that minimizes the acceleration
error performance variable

z(k) = Az;IMU(k)�Az;cmd(k): (13)

The adaptive control input augments the three loop autopilot such that

ua(k) = u(k) + ~u(k): (14)

Measurement vector components can be constructed from combinations of available IMU measurements, acceleration
performance variables, and measured exogenous inputs.

A time-series model from u and w to z is obtained from (10) and (12)

z(k) =
nX
i=1

��iz(k � i) +
nX
i=d

�iu(k � i) +
nX
i=0

iw(k � i); (15)

where �1; : : : ; �n 2 R, �d; : : : ; �n 2 Rlz�lu , 0; : : : ; n 2 Rlz�lw , and the relative degree d is the smallest non-
negative integer i such that the ith Markov parameter is nonzero. Since i > 0, the Markov parameter sequence is given
by Hi � E1A

i�1B. Furthermore, Hd = �d.

III. Overview of the Cumulative Retrospective Cost Adaptive Controller

In this section, we review the cumulative retrospective cost adaptive control algorithm for the discrete-time linear
model represented by equations (10)-(12). We use a strictly proper time-series controller of order nc, such that the
control u(k) is given by

u(k) =
ncX
i=1

Mi(k)u(k � i) +
ncX
i=1

Ni(k)y(k � i); (16)

3 of 13

American Institute of Aeronautics and Astronautics



where, for all i = 1; : : : ; nc, Mi 2 Rlu�lu and Ni 2 Rlu�ly are determined by the adaptive control law presented
below. The control (16) can be expressed as

u(k) = #(k)�(k); (17)

where

#(k) �
�
N1(k) � � � Nnc(k) M1(k) � � � Mnc(k)

�
; (18)

and

�(k) �

2666666664

y(k � 1)
...

y(k � nc)
u(k � 1)

...
u(k � nc)

3777777775
2 Rnc(lu+ly): (19)

Next, we define the retrospective performance

ẑ(#̂; k) � z(k) +
�X
i=d

��i
h
#̂� #(k � i)

i
�(k � i); (20)

where � � d, #̂ 2 Rlu�(nc(ly+lu)) is an optimization variable used to derive the adaptive law, and ��d; : : : ; ��� 2 Rlz�lu

are estimates of the Markov parameters Hd; : : : ;H� . Other choices of ��d; : : : ; ��� are available14.
Defining �̂ � vec #̂ 2 Rnclu(ly+lu) and �(k) � vec #(k) 2 Rnclu(ly+lu), it follows that

ẑ(�̂; k) = z(k) +
�X
i=d

�T
i (k)

h
�̂��(k � i)

i
= z(k)�

�X
i=d

�T
i (k)�(k � i) + 	T(k)�̂; (21)

where, for i = d; : : : ; �,

�i(k) � �(k � i)
 ��T
i 2 R(nclu(ly+lu))�lz ; (22)

where 
 represents the Kronecker product, and

	(k) �
�X
i=d

�i(k): (23)

Now, define the cumulative retrospective cost function

J(�̂; k) �
kX
i=0

�k�iẑT(�̂; i)Rẑ(�̂; i) +
h
�̂��(0)

iT
Q
h
�̂��(0)

i
; (24)

where � 2 (0; 1], and R 2 Rlz�lz and Q 2 R(nclu(ly+lu))�(nclu(ly+lu)) are positive definite. Note that � serves as a
forgetting factor, which allows more recent data to be weighted more heavily than past data.

The cumulative retrospective cost function (24) is minimized by a recursive least-squares (RLS) algorithm with a
forgetting factor19–21. Therefore, J(�̂; k) is minimized by the adaptive law

�(k + 1) = �(k)� P (k)	(k)
�
�R�1 + 	T(k)P (k)	(k)

��1
zR(k); (25)

P (k + 1) =
1
�
P (k)� 1

�
P (k)	(k)

�
�R�1 + 	T(k)P (k)	(k)

��1
	T(k)P (k); (26)

where P (0) = Q�1, �(0) 2 Rnclu(ly+lu), and the retrospective performance measurement zR(k) � ẑ(�(k); k).
Note that zR(k) is computable from (21) using measured signals z, y, u, #, and the matrix coefficients ��d; : : : ; ��� .
The cumulative retrospective cost adaptive control law is thus given by (25), (26), and

u(k) = #(k)�(k) = vec �1(�(k))�(k): (27)

The key feature of the adaptive control algorithm is the use of the retrospective performance (21), which modifies
the performance variable z(k) based on the difference between the actual past control inputs u(k � d); : : : ; u(k � �)
and the recomputed past control inputs û(�̂; k � d) � vec �1(�̂)�(k � d); : : : ; û(�̂; k � �) � vec �1(�̂)�(k � �),
assuming that the current controller �̂ had been used in the past.
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IV. Individual Scenario Results

We investigate four air-to-air missile intercept scenarios with interceptor initially traveling horizontal at Mach 3.0
and target velocity horizontal at a constant Mach 1.0 at an altitude 500 meters above the initial interceptor position.
The feedback variable is chosen as y(k) = z(k), hence the missile plant model yields lu = ly = 1. By defining the
exogenous signal vector to consist of the guidance acceleration command Az;cmd and the gyro sensor noise, we have
lw = 2. A cumulative retrospective cost adaptive controller of order 25 is used, the RLS covariance initialization is
set to P (0) = 10�5I , and the first 10 Markov parameters of the linearized model are gain scheduled in the design for
each trim point.

In the nominal, no failure scenario, the three loop autopilot is used without the adaptive controller. During the
first 0.8 seconds, the seeker searches for and acquires the target. The proportional navigation acceleration command
is tracked by the three loop autopilot during the remainder of the engagement. Figure 2 illustrates the maximum
lateral acceleration reached is 35 g with the angle of attack reaching no more than 16 degrees. The missile achieves a
final miss distance of 0.3 meter with trajectory given in Figure 3. In the second scenario, we augment the three loop
autopilot with the adaptive controller. Noticeable changes are produced in the system behavior that can be seen in
Figure 2. However, Figure 5 shows that the trajectory is not altered significantly and the augmented adaptive system
produces a comparable miss distance of 0.2 meter.

For the failure scenarios each assume that Gaussian zero-mean white noise with standard deviation 0.1 rad/sec
corrupts the rate gyro measurement. The noise not only interferes with the operation of the autopilot, but the guidance
system is also directly affected. In the non-adaptive failure scenario, oscillatory motions appear in the system through-
out the engagement as is shown in Figure 6. The trajectory is illustrated in Figure 7, and the non-adaptive controller
results in a miss distance of approximately 27 meters.

The rate gyro failure also impacts performance in the adaptive case, the oscillatory motions become more pro-
nounced in Figure 8 and the augmented adaptive controller saturates the fin commands in an attempt to minimize the
error between measured and commanded acceleration. However, the trajectory shown in Figure 9 indicates that missile
meets the overall control objective with a miss distance of 0.9 meter.

V. Design of Experiment Results

A design of experiments study was developed to assess the overall performance impact of RCAC algorithm designs
on intercept miss distance when the rate gyro noise in the previous section is applied. The adaptive control design
variables and cases chosen for this study are provided in Table 1. The monte carlo variables, distribution functions,
and ranges are provided in Table 2.

For each individual case in Table 1, we investigate the influence of the design variables on miss distance to deter-
mine a good candidate adaptive control design. Figure 10 compares miss distance results in the no gyro noise case
for each controller input combination. All combinations produce similar mean miss distances within a meter. When
the rate gyro noise failure is applied, Figure 11 shows miss distance degrades in all cases. However, the median miss
distance when the performance variable z is a component of y is reduced by over 7 meters for the combined set of
adaptive controller orders. When controller order is investigated, Figures 12 and 13 indicate the design variable has
a lesser influence on miss distance. Thus, a good candidate for a controller design would be of low order to gain
computational efficiency. Based on these results, a reasonable RCAC design would include the performance variable
and gyro rate as measurement inputs with controller order 10. Figure 14 indicates median miss distance is reduced by
roughly 9 meters when compared with the non-adaptive case in Figure 11.

Table 1. Design Variables

Variable Controller Order nc Measurement Input y Gyro Noise Failure
Range [10; 15; 20] z only, q only, both z and q on or off

VI. Conclusion

Through a design of experiments analysis, we have shown that a cumulative retrospective cost adaptive controller
can produce a modest improvement in interceptor miss distance when a significant increase in rate gyro noise occurs.
Although tuning an adaptive controller for a specific scenario can produce drastic improvements in miss distance, such
single point analyzes often lead to overly optimistic performance predictions. Finally, we show that the design of
experiments process can be used to find good adaptive controller design candidates.
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Table 2. Monte Carlo Variables

Variable Distribution Function Range
Initial Range to Target Uniform 3 to 7 km

Initial Missile Elevation Uniform 2.1 to 4.4 km
Initial Relative Elevation Angle Uniform -3 to +3 deg

Initial Missile Mach Uniform 2.5 to 3.5
Initial Angle of Attack Uniform 0 to 1:3 deg

Initial Target Trajectory Angle Normal Mean 180degwith3� = 10deg
Initial Moment of Inertia Normal Mean 247kg m2with� = 5%

Cx; Cz; Cm Normal Nominal coefficient values with � = �15%
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Figure 2. Time histories of measurements and control inputs for the nominal engagement scenario, no adaptive case.
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Figure 3. Interceptor and target trajectories for the nominal engagement scenario, no adaptive case.
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Figure 4. Time histories of measurements and control inputs for the nominal engagement scenario, augmented adaptive case.
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Figure 5. Interceptor and target trajectories for the nominal engagement scenario, augmented adaptive case.
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Figure 6. Time histories of measurements and control inputs for the applied rate gyro noise disturbance, no adaptive case.
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Figure 7. Interceptor and target trajectories for the applied rate gyro noise disturbance, no adaptive case.

9 of 13

American Institute of Aeronautics and Astronautics



0 0.5 1 1.5 2 2.5 3 3.5
−50

0

50

Time [Sec]

N
or

m
al

 A
cc

el
er

at
io

n 
[g

]
 

 
a

z
 actual

a
z
 command

0 0.5 1 1.5 2 2.5 3 3.5
−30

−20

−10

0

10

20

30

Time [Sec]

In
ci

de
nc

e 
α 

[d
eg

]

0 0.5 1 1.5 2 2.5 3 3.5
2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

Time [Sec]

M
ac

h 
N

um
be

r

0 0.5 1 1.5 2 2.5 3 3.5
−30

−20

−10

0

10

20

30

Time [Sec]

F
in

 C
on

tr
ol

 [d
eg

]
Figure 8. Time histories of measurements and control inputs for the applied rate gyro noise disturbance, augmented adaptive case.
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Figure 9. Interceptor and target trajectories for the applied rate gyro noise disturbance, augmented adaptive case.
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Figure 10. Miss distance histogram for different controller input combinations, no rate gyro noise disturbance, 2000 runs per design case.
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Figure 11. Miss distance histogram for different controller input combinations, rate gyro noise disturbance enanbled, 2000 runs per design
case.

11 of 13

American Institute of Aeronautics and Astronautics



0 1 2 3 4 5 6
0

200

400

600

800

1000

(m
ea

n,
 m

ed
ia

n,
 s

td
ev

) 
=

 
(0

.1
10

,  
0.

06
3,

  0
.1

72
) 

Controller order = 10
All measurement input cases

Gyro noise DISABLED

0 1 2 3 4 5 6
0

200

400

600

800

1000

(m
ea

n,
 m

ed
ia

n,
 s

td
ev

) 
=

 
(0

.1
07

,  
0.

05
9,

  0
.1

42
) 

Controller order = 15
All measurement input cases

0 1 2 3 4 5 6
0

200

400

600

800

1000

(m
ea

n,
 m

ed
ia

n,
 s

td
ev

) 
=

 
(0

.1
36

,  
0.

06
5,

  0
.3

15
) 

miss distance [m]

Controller order = 20
All measurement input cases

Figure 12. Miss distance histogram for different adaptive controller orders, no rate gyro noise disturbance, 2000 runs per design case.
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Figure 13. Miss distance histogram for different adaptive controller orders, rate gyro noise disturbance enabled, 2000 runs per design case.
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Figure 14. Miss distance histogram, y = [z;q], controller order = 10, rate gyro noise disturbance enabled, 2000 runs.
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